普通部」カテゴリーアーカイブ

文章題

2022年慶應普通部の問題です。

あるお店では、1個15円、18円、25円の3種類のお菓子を売っています。どのお菓子も1個以上選び、合計金額が301円になるように買います。
(1)18円のお菓子を12個買うと、15円のお菓子と25円のお菓子はそれぞれ何個買えますか。
(2)お菓子の買い方は全部で何通りありますか。

【解説と解答】
(1)
18×12=216 301-216=85円
(15円、25円)=(4、1)となります。
(答え)15円 4個 25円 1個
(2)18円×2=36円のとき、301円-36円=265円
(15円、25円)=(1、10)(6、7)(11、4)(16、1)から4通り
18円×7=126円のとき、301円-126円=175円
(15円、25円)=(0、7)(5、4)(10、1)で必ず1個は買わないといけないので2通り
18×17=306円は301円を超えてしまいます。
(1)とあわせて7通り。
(答え)7通り

容積に関する問題

2022年慶應普通部の出題です。

図1のように、底面が半径5cmの円である円柱の容器Aの中に、底面が半径4cmの円で高さが5cmである円柱の容器Bが置いてあり、容器Bの中には水が入っています。図2のような○あの面が正方形である直方体Cを、○あの面を容器Bの底につくように入れると、容器Bから水があふれ、容器Aの水の深さが2cmになりました。このとき、真上から見ると、図3のように直方体Cは容器Bにぴったりと入りました。はじめ、水は容器Bの底面から何cmのところまで入っていましたか。ただし、容器の厚さは考えないものとし、円周率は3.14とします。

【解説と解答】
Bの容積は4×4×3.14×5=80×3.14
Cの体積は底面の正方形の対角線の長さが4×2=8cmになるので、
8×8÷2×3.14=32×3.14
一方あふれ出た水は(5×5-4×4)×3.14×2=18×3.14
したがって水は80×3.14-32×3.14+18×3.14=66×3.14
なので、66×3.14÷(4×4×3.14)=4.125cm(=4&1/8cm)
(答え)4&1/8cm

速さに関する問題

2022年慶應普通部の問題です。

点Oを中心として円周の長さが480 cm と360 cm の2つの円があります。大きい円の周上に点Pがあり、時計回りに毎秒6cmで円の周上を動きます。小さい円の周上に点Qがあり、時計回りに毎秒2cmで円の周上を動きます。右の図のように、はじめ、点P、0、Qは一直線上に並び、点PとQは同時に出発しました。半径OPとOQのつくる角の大きさがはじめて30°になるのは、点P、Qが出発してから何秒後ですか。

【解説と解答】
角速度で考えると、Pは毎秒360÷(480÷6)=4.5°になり、
Qは毎秒360÷(360÷2)=2°になるから、Pの方が速くなります。
最初180°開いていた角度が毎秒2.5度ずつ減っていきますから、
(180-30)÷(4.5-2)=60秒
(答え)60秒

半島に関する問題

2022年慶應普通部の出題です。

日本のいくつかの半島とその周辺地域について説明した次のA~Eを読んで,あとの問いに答えなさい。

A.この半島の西側の海域に造られた人工島には、「セントレア」という愛称の国際空港がある。政令指定都市である( あ )市の中心部から、電車を利用した場合、最短28分で到着できる。
B.この半島の南西側に広がる平野では、果物の栽培が盛んで,①その果物は海外にも輸出されている。
平野の南部に位置する市は、江戸時代に造られた天守が現存する城下町としで知られている。
C.この半島の北部に位置する( い )市は、伝統工芸品に指定されている漆器の産地として有名である。この市は、江戸時代から明治時代にかけて、(   )の寄港地として発達した。
D.この半島の南側に位置する市は、源泉数と湧出量がともに国内最多である温泉観光地として知られている。「コロナ禍」以前には,国内だけでなく、②海外から訪れる観光客も多かった。

E.この半島の北部に位置する( う )市は、古くから信仰を集める神社の門前町として繁栄してきた。特徴的な海岸が続く半島の南側にある島では、2016年に③重要な国際会議が開催された。

1.下のア~オは、A~Eのいずれかの半島を描いた地図です。地図中の・は、各半島がある府県の府県庁所在地を示しています。地図の縮尺はすべて同じですが向き(方位)は上が北ではありません。A~Eに当たる地図をア~オからそれぞれ選んで記号で答えなさい。また、各半島の名前をそれぞれ書きなさい。

2.( あ )~( う )に当てはまる地名をそれぞれ漢字で書きなさい。
3.(   )に当てはまることばを漢字で書きなさい。
4.下線部①について、全体の7割以上は台湾に輸出されています。台湾はこの果物をおもに日本、アメリカ、チリ、ニュージーランドから輸入しています。下の表は、この4か国からの輸入の状況についてまとめたものです。ア~エから日本を選んで記号で答えなさい。

5.下線部②について,2019年にDの半島がある県を訪れた観光客が最も多かった国を、次のア~エから選んで記号で答えなさい.
ア. タイ イ. シンガポール ウ. 中国 エ. 韓国
6.下線部③として正しいものを,次のア~エから選んで記号で答えなさい。
ア.COP22   イ.G7サミット   ウ.APEC首脳会議   エ.IOC総会

【解説と解答】
1.
Aはセントレアから知多半島とわかるでしょう。地図は
Bは津軽半島。江戸時代から天守が現存するのは弘前城。
Cは能登半島。漆器の町は輪島。
Dは国東半島。温泉地は別府市。
Eは志摩半島。古くから信仰を集める神社とは伊勢神宮。
・のあるところが陸ですから、そこに注意して判断していきましょう。
(答え)A オ 知多半島 B ウ 津軽半島 C エ 能登半島 D イ 国東半島 E ア 志摩半島
2.
( あ )は名古屋市。( い )は輪島市。 ( う )は伊勢市。
(答え)あ 名古屋 い 輪島 う 伊勢
3.北前船の寄港地です。
(答え)北前船
4.平均の輸入価格が高いこと。収穫期が秋冬であることに注目します。イがチリ、ウがニュージーランド、エがアメリカ。
(答え)ア
5.別府市ですから、九州なので、韓国からの旅行者が多くなっています。
(答え)エ
6.2016年に開催されたのは伊勢サミットでした。
(答え)イ

平面図形の問題

三角形ABCがあります。下の図のように、直線DG、GE、EH、HF、FCをひいて、三角形ABCを面積が等しい6個の三角形に分けました。

(1)AE:EBを求めなさい。
(2)点Fと点Gを直線で結び、三角形EFGをつくります。
  三角形EFGの面積は三角形ABCの面積の何倍ですか。

【解説と解答】

(1)
AD:DE=1:1 AE:EF=3:1 AF:FB=5:1ですから、
AB=【12】とすると、FB=【2】 AE=【12】÷6×5÷4×3=【7.5】
より7.5:4.5=5:3
(答え)5:3
(2)
AG:GH=2:1 AH:HC=4:1からAC=15とすると、AH=12 AG=8
AG:GH:HC=8:4:3
AE:EF:FB=7.5:2.5:2=15:5:4 
三角形AEG=三角形ABC×15/24×8/15=三角形ABC×1/3
AE:EF=3:1だから
三角形EFG=三角形ABC×1/3×1/3=三角形ABC×1/9
(答え)1/9