入試問題解説」カテゴリーアーカイブ

平面図形の問題

2023年慶應普通部の出題です。

下の図は四角形ABHG、BCDH、DEFHは長方形で、三角形FGHは直角三角形です。AD=BEのとき、( あ )の角度を求めなさい。

【解説と解答】

長方形ACDGについてADと同じ対角線をCGし、長方形BCEFについて対角線BEと同じ対角線をCFとします。
CG=CFから三角形CGFは二等辺三角形になり、角DFHが49°、角BFCが16°になるので、角CGFも65°だから、角CGDは65-41=24°
角GDAも24°だから(あ)は16+24+90=130
(答え)130°

平面図形に関する問題

2022年慶應普通部の出題です。

下の図のように,点Pは直線CD上にあり,点Aと点Pを直線で結びました。AB=BC=CP=DE=EAのとき, ○あの角度を求めなさい。

【解説と解答】

四角形BCDEは等脚台形なので、BEとCDは平行。
角RBC=30°角CBE=180-30=150°角ABE=210―150=60°より
三角形ABEは正三角形。
AB=BC=CP=BE=PEでBEとCPは平行なので、四角形BCPEはひし形。
角AEP=60°+30°=90° AE=PEから三角形APEは直角二等辺三角形
角PAE=45°より○あは60-45=15°
(答え)15°

容積に関する問題

2022年慶應義塾湘南藤沢中等部の問題です。

図1のような、ふたのない1辺12 cm の立方体の容器が水平な床に置かれている。この立方体には、図1のように、高さ6cmと10 cm の仕切り板ア、イが、底面ABCDを3等分する位置にまっすぐ取り付けられている。仕切られた底面を○あ、○い、○うとし、仕切り板の厚さは考えないものとする。また、図2は面FBCGを正面にして見た図である。


(1)容器が空の状態で、○あの真上から水を毎秒48 cm3 ずつ入れたとき、容器の中の水がいっぱいになるのは何秒後ですか。
(2)容器が空の状態で、○うの真上から水を毎秒48 cm3 ずつ入れたとき、○あの部分の水面の高さが底から2cmになるのは何秒後ですか。
(3)容器を水でいっぱいに満たし、図3のように、辺ABを床につけたまま、静かに容器を45°かたむけて水をこぼし、もとにもどす動作を行った。この動作を行った後、容器に残っている水の量を求めなさい。

【解説と解答】

(1)12×12×12÷48=36
(答え)36秒後
(2)○うの部分には4×12×10
○いの部分には4×12×6 ○あの部分には4×12×2入るから、
10+6+2=18秒
(答え)18秒
(3)

斜線部に水が残るので、この面積は12×12÷2+4×10-4×4=72+24=96
96×12=1152
(答え)1152cm3

文章題

2022年慶應普通部の問題です。

あるお店では、1個15円、18円、25円の3種類のお菓子を売っています。どのお菓子も1個以上選び、合計金額が301円になるように買います。
(1)18円のお菓子を12個買うと、15円のお菓子と25円のお菓子はそれぞれ何個買えますか。
(2)お菓子の買い方は全部で何通りありますか。

【解説と解答】
(1)
18×12=216 301-216=85円
(15円、25円)=(4、1)となります。
(答え)15円 4個 25円 1個
(2)18円×2=36円のとき、301円-36円=265円
(15円、25円)=(1、10)(6、7)(11、4)(16、1)から4通り
18円×7=126円のとき、301円-126円=175円
(15円、25円)=(0、7)(5、4)(10、1)で必ず1個は買わないといけないので2通り
18×17=306円は301円を超えてしまいます。
(1)とあわせて7通り。
(答え)7通り

容積に関する問題

2022年慶應普通部の出題です。

図1のように、底面が半径5cmの円である円柱の容器Aの中に、底面が半径4cmの円で高さが5cmである円柱の容器Bが置いてあり、容器Bの中には水が入っています。図2のような○あの面が正方形である直方体Cを、○あの面を容器Bの底につくように入れると、容器Bから水があふれ、容器Aの水の深さが2cmになりました。このとき、真上から見ると、図3のように直方体Cは容器Bにぴったりと入りました。はじめ、水は容器Bの底面から何cmのところまで入っていましたか。ただし、容器の厚さは考えないものとし、円周率は3.14とします。

【解説と解答】
Bの容積は4×4×3.14×5=80×3.14
Cの体積は底面の正方形の対角線の長さが4×2=8cmになるので、
8×8÷2×3.14=32×3.14
一方あふれ出た水は(5×5-4×4)×3.14×2=18×3.14
したがって水は80×3.14-32×3.14+18×3.14=66×3.14
なので、66×3.14÷(4×4×3.14)=4.125cm(=4&1/8cm)
(答え)4&1/8cm

速さに関する問題

2022年 慶應湘南藤沢中等部の問題です。

る。三田さんはA町を、藤沢さんはB町を同時に出発して、A町とB町の間を一往復した。
     三田さんの登る速さと下る速さの比は5:9
     藤沢さんの登る速さと下る速さの比は3:5
であり、登りも下りも藤沢さんの方が三田さんより毎分6m速いという。
(1)三田さんの下る速さは分速何mですか。
(2)2人が同時に出発して、最初に出会うのは何分後ですか。
(3)2人が最初に出会ってから、2回目に出会うまでに何分かかりますか。

【解説と解答】
(1)三田さんの下る速さを【9】とすると、藤沢さんの下る速さは【9】+6
一方三田さんの登る速さは【5】となるから、藤沢さんの登る速さは【5】+6
【9】+6:【5】+6=5:3から【25】+30=【27】+18
【2】=12 【1】=6mになるので、三田さんの下る速さは6×9=54
(答え)54m
(2)
藤沢さんが上り、三田さんが下るので、
3240÷(54+6×5+6)=3240÷90=36
(答え)36分後
(3)藤沢さんが上り終わるのは3240÷36=90分後
三田さんが下り終わるのは3240÷54=60分後
藤沢さんがおり始めるとき、三田さんは30分上っているので、
30×30=900m上っているから二人の間の距離は3240―900=2340m
2340÷(60+30)=26分後に2回目に出会うので、最初からは90+26=116分後になるので116-36=80分
(答え)80分

速さに関する問題

2022年 慶應普通部の問題です。

P地点からQ地点へ行くとき、A君は秒速2m、B君は秒速3mで走り、C君は自転車で秒速5mで進みました。はじめ、A君、B君が同時にP地点を出発し、しばらくしてからC君がP地点を出発しました。C君はA君を追い抜いてからB君を追い抜くまで4分間かかり、B君を追い抜いてから1分後にQ地点に着きました。P地点からQ地点までの道のりは何mですか。

【解説と解答】
C君がA君を追い抜いたときからB君を追い抜くまでに4分です。
C君がA君を追い抜いたとき、B君はA君の前を(5-3)×240=480m先に進んでいたので、A君とB君の秒速の差が1mですから、480÷1=480秒で、C君がA君を追い抜いたのはA君とB君が出発してから480秒後になります。したがってB君がC君に抜かれたのはPから3×(480+240)=2160mのところで、そこからC君は1分でQについたのだから、PQ間は2160+5×60=2460mになります。

(答え)2460m

平面図形に関する問題

2022年慶應湘南藤沢中等部の問題です。

次の図は、たて24 cm、 横32 cm、 対角線の長さが40cmの長方形ABCDである。また、BDを直径とする半円を図のようにかくと点Cは半円上にある。このとき、次の問いに答えなさい。ただし、円周率は3.14とする。
(1)かげのついた部分の周りの長さを求めなさい。
(2)かげのついた部分の面積を求めなさい。
(3)長方形ABCDをBDを折り目として折り返したとき、頂点Cの移る点をE、BEとADの交点をFとする。このとき、三角形BDFの面積を求めなさい。

【解説と解答】

(1)40×3.14÷2+24+32=62.8+56=118.8
(答え)118.8cm
(2)20×20×3.14÷2-24×32÷2
=628-384=244
(答え)244cm2
(3)三角形ABFと三角形EFDは合同の直角三角形です。
三角形FBDはFB=FDの二等辺三角形になるので、FからBDに垂線を下した線とBDの交点をOとするとBO=ODとなり、三角形BFOは直角三角形。
ここで角FBOと角DBCが等しいので、三角形FBOと三角形BDCが相似。
BO=20cmからFO=20×24/32=15cmになるので、
三角形FBD=40×15÷2=300
(答え)300cm2

速さに関する問題

2022年慶應普通部の問題です。

点Oを中心として円周の長さが480 cm と360 cm の2つの円があります。大きい円の周上に点Pがあり、時計回りに毎秒6cmで円の周上を動きます。小さい円の周上に点Qがあり、時計回りに毎秒2cmで円の周上を動きます。右の図のように、はじめ、点P、0、Qは一直線上に並び、点PとQは同時に出発しました。半径OPとOQのつくる角の大きさがはじめて30°になるのは、点P、Qが出発してから何秒後ですか。

【解説と解答】
角速度で考えると、Pは毎秒360÷(480÷6)=4.5°になり、
Qは毎秒360÷(360÷2)=2°になるから、Pの方が速くなります。
最初180°開いていた角度が毎秒2.5度ずつ減っていきますから、
(180-30)÷(4.5-2)=60秒
(答え)60秒

半島に関する問題

2022年慶應普通部の出題です。

日本のいくつかの半島とその周辺地域について説明した次のA~Eを読んで,あとの問いに答えなさい。

A.この半島の西側の海域に造られた人工島には、「セントレア」という愛称の国際空港がある。政令指定都市である( あ )市の中心部から、電車を利用した場合、最短28分で到着できる。
B.この半島の南西側に広がる平野では、果物の栽培が盛んで,①その果物は海外にも輸出されている。
平野の南部に位置する市は、江戸時代に造られた天守が現存する城下町としで知られている。
C.この半島の北部に位置する( い )市は、伝統工芸品に指定されている漆器の産地として有名である。この市は、江戸時代から明治時代にかけて、(   )の寄港地として発達した。
D.この半島の南側に位置する市は、源泉数と湧出量がともに国内最多である温泉観光地として知られている。「コロナ禍」以前には,国内だけでなく、②海外から訪れる観光客も多かった。

E.この半島の北部に位置する( う )市は、古くから信仰を集める神社の門前町として繁栄してきた。特徴的な海岸が続く半島の南側にある島では、2016年に③重要な国際会議が開催された。

1.下のア~オは、A~Eのいずれかの半島を描いた地図です。地図中の・は、各半島がある府県の府県庁所在地を示しています。地図の縮尺はすべて同じですが向き(方位)は上が北ではありません。A~Eに当たる地図をア~オからそれぞれ選んで記号で答えなさい。また、各半島の名前をそれぞれ書きなさい。

2.( あ )~( う )に当てはまる地名をそれぞれ漢字で書きなさい。
3.(   )に当てはまることばを漢字で書きなさい。
4.下線部①について、全体の7割以上は台湾に輸出されています。台湾はこの果物をおもに日本、アメリカ、チリ、ニュージーランドから輸入しています。下の表は、この4か国からの輸入の状況についてまとめたものです。ア~エから日本を選んで記号で答えなさい。

5.下線部②について,2019年にDの半島がある県を訪れた観光客が最も多かった国を、次のア~エから選んで記号で答えなさい.
ア. タイ イ. シンガポール ウ. 中国 エ. 韓国
6.下線部③として正しいものを,次のア~エから選んで記号で答えなさい。
ア.COP22   イ.G7サミット   ウ.APEC首脳会議   エ.IOC総会

【解説と解答】
1.
Aはセントレアから知多半島とわかるでしょう。地図は
Bは津軽半島。江戸時代から天守が現存するのは弘前城。
Cは能登半島。漆器の町は輪島。
Dは国東半島。温泉地は別府市。
Eは志摩半島。古くから信仰を集める神社とは伊勢神宮。
・のあるところが陸ですから、そこに注意して判断していきましょう。
(答え)A オ 知多半島 B ウ 津軽半島 C エ 能登半島 D イ 国東半島 E ア 志摩半島
2.
( あ )は名古屋市。( い )は輪島市。 ( う )は伊勢市。
(答え)あ 名古屋 い 輪島 う 伊勢
3.北前船の寄港地です。
(答え)北前船
4.平均の輸入価格が高いこと。収穫期が秋冬であることに注目します。イがチリ、ウがニュージーランド、エがアメリカ。
(答え)ア
5.別府市ですから、九州なので、韓国からの旅行者が多くなっています。
(答え)エ
6.2016年に開催されたのは伊勢サミットでした。
(答え)イ