2025年 慶應義塾湘南藤沢中等部 算数3です。
図のような一辺10mの正方形の柵がある。柵にはAを中心に内側にのみ開く戸が1つあり、Bの位置には一頭の羊がロープでつながれている。ロープの長さは1mから10mの間で固定することができる。戸や柵の厚さ、および羊の大きさは考えないものとし、羊の位置はロープの端と考える。円周率は3.14として、以下の問いに答えなさい。
(1)戸が閉まっている状態から、図のように内側に全開になるまでの、戸が開いた角度を求めなさい。
(2)戸が図のように内側に全開の状態で、ロープの長さを10mで固定したときの、羊の動ける範囲の面積を求めなさい。
(3)戸が閉まっている状態で、羊が動ける範囲の周囲の長さ(直線の部分も含む)を測ったところ、46.4mであった。このとき、ロープの長さを何mに固定しましたか。
【解説と解答】
(1)三角形ACDでAD=6m、AC=3mですから、三角形ACDは正三角形の半分の直角三角形になるので、角DAC=60°から、戸が開いた角度は180―60=120°
(答え)120°
(2)下図のように動くことができます。
Bが中心でBE=BF=10m
BJ=6m、EJ=IJ=4m
FC=GC=6m
AG=AH=3mで角GAHは120°ですから、
10×10×3.14×1/2
+(6×6+4×4)×3.14×1/4
+3×3×3.14×1/3
=(50+13+3)×3.14
=66×3.14=207.24
(答え)207.24m2
(3)ロープの長さを【1】とすると羊が動ける範囲の周りの長さは
【2】×3.14×1/2+(【1】-4)×2×3.14×1/4+(【1】-6)×2×3.14×1/4+10+【1】-4+【1】-6
=(【1】+【0.5】-2+【0.5】-3)×3.14+10+【1】-4+【1】-6
=(【2】-5)×3.14+【2】=
【8.28】-15.7=46.4
(46.4+15.7)÷8.28=7.5
(答え)7.5m